Recognition of Micro-Array Protein Crystals Images using Multi-scale Representations

نویسندگان

  • Ya Wang
  • David H. Kim
  • Elsa D. Angelini
  • Andrew F. Laine
چکیده

Micro-array protein crystal images are now routinely acquired automatically by CCD cameras. High-throughput automatic classification of protein crystals requires to alleviation of the time-consuming task of manual visual inspection. We propose a classification framework combined with a multi-scale image processing method for recognizing protein crystals and precipitates versus clear drops. The main two points of the processing method are the multi-scale Laplacian pyramid filters and histogram analysis techniques to find an effective feature vector. The processing steps include: 1. Tray well cropping using Radon Transform; 2. Droplet cropping using an ellipsoid Hough Transform; 3. Multi-scale image separation with Laplacian pyramidal filters; 4. Feature vector extraction from the histogram of the multi-scale boundary images. The feature vector combines geometric and texture features of each image and provides input to a feed forward binomial neural network classifier. Using human (expert crystallographers) classified images as ground truth, the current experimental results gave 86% true positive and 94% true negative rates (average true percentage is 90%) using an image database which contained over 2,000 images. To enable NESG collaborators to carry our crystal classification, a web-based Matlab© server was also developed. Users at other locations on the internet can input micro-array crystal image folders and parameters for training and testing processes through a friendly web interface. Recognition results are shown on the client side website and may be downloaded by a remote user as an Excel© spreadsheet file.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Face Recognition in Thermal Images based on Sparse Classifier

Despite recent advances in face recognition systems, they suffer from serious problems because of the extensive types of changes in human face (changes like light, glasses, head tilt, different emotional modes). Each one of these factors can significantly reduce the face recognition accuracy. Several methods have been proposed by researchers to overcome these problems. Nonetheless, in recent ye...

متن کامل

Implementation of Face Recognition Algorithm on Fields Programmable Gate Array Card

The evolution of today's application technologies requires a certain level of robustness, reliability and ease of integration. We choose the Fields Programmable Gate Array (FPGA) hardware description language to implement the facial recognition algorithm based on "Eigen faces" using Principal Component Analysis. In this paper, we first present an overview of the PCA used for facial recognition,...

متن کامل

Multi-frame Super Resolution for Improving Vehicle Licence Plate Recognition

License plate recognition (LPR) by digital image processing, which is widely used in traffic monitor and control, is one of the most important goals in Intelligent Transportation System (ITS). In real ITS, the resolution of input images are not very high since technology challenges and cost of high resolution cameras. However, when the license plate image is taken at low resolution, the license...

متن کامل

Recognition of cDNA micro-array image based on artificial neural network

Published online: 29/4/2013 Abstract The complementary DNA (cDNA) micro-array image is considered to be the magic biometric technique for personal identification based on the concurrent identification of millions of genes. In this paper, we present a new method for personal identification based on cDNA micro-array image processing and the Artificial Neural Network (ANN). The image processing te...

متن کامل

Learning scale-variant and scale-invariant features for deep image classification

Convolutional Neural Networks (CNNs) require large image corpora to be trained on classification tasks. The variation in image resolutions, sizes of objects and patterns depicted, and image scales, hampers CNN training and performance, because the task-relevant information varies over spatial scales. Previous work attempting to deal with such scale variations focused on encouraging scale-invari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005